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Abstract
In this paper we consider vector fields in R

3 that are invariant under a suitable
symmetry and that possess a ‘generalized heteroclinic loop’ L formed by two
singular points (e+ and e−) and their invariant manifolds: one of dimension
2 (a sphere minus the points e+ and e−) and one of dimension 1 (the open
diameter of the sphere having endpoints e+ and e−). In particular, we analyse
the dynamics of the vector field near the heteroclinic loop L by means of
a convenient Poincaré map, and we prove the existence of infinitely many
symmetric periodic orbits near L. We also study two families of vector fields
satisfying this dynamics. The first one is a class of quadratic polynomial vector
fields in R

3, and the second one is the charged rhomboidal four-body problem.

PACS number: 02.30.Hq
Mathematics Subject Classification: 70F10, 78A35, 34C25

1. Introduction

In this paper we study the periodic motion around a generalized heteroclinic loop L formed
by a two-dimensional sphere S

2 and an interior diameter � of the sphere, see figure 1. We
suppose that the flow of a system X having such a loop is defined on the closed ball D

3 of
R

3 having as boundary S
2. On S

2 we have two foci, e+ and e−, diametrally opposite at the
endpoints of the diameter �. Every orbit on S

2 different from the two foci starts spiraling at
e− and ends spiraling at e+. In fact, S

2\{e+, e−} is the two-dimensional unstable manifold of
e− which coincides with the two-dimensional stable manifold of e+. Moreover, the diameter
� is formed by a unique orbit starting at e+ and ending at e−; i.e. � is the one-dimensional
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Figure 1. The generalized heteroclinic loop.

unstable manifold of e+ which coincides with the one-dimensional stable manifold of e−. We
assume that the flow on D

3 is symmetric with respect to a line of symmetry L orthogonal to
the diameter �.

Analysing the dynamics of the vector field X near this generalized heteroclinic loop L by
means of a convenient Poincaré map and using the symmetry of the problem we can prove
the existence of infinitely many symmetric periodic orbits of X near L. The key point of this
paper is that we can obtain the properties of the Poincaré map that are necessary to prove
the existence of symmetric periodic orbits by using geometric arguments instead of using the
analytic expression of the Poincaré map. This avoids in this case the usual hard computations
necessary for computing the image of the Poincaré map and its intersection with the line of
symmetry. Moreover it allows us to prove the existence of infinitely many periodic orbits for
any vector field X possessing the heteroclinic loop L and the mentioned symmetry although
we do not know the explicit analytic expression of the vector field. Other papers following
these geometric approach are [2–4, 6].

To use heteroclinic loops for finding periodic orbits near using the geometry close to
these loops more than the tedious computations associated with the analytic expressions of
the Poincaré maps has a long tradition in the qualitative study of the differential systems, see
for instance [2, 4, 6, 8, 10, 18]. In many cases the heteroclinic loops are formed by stable and
unstable manifolds of the same dimension (see [12, 13]), or by heteroclinic orbits which are
intersection of stable and unstable manifolds (see [6, 7, 10]). The heteroclinic loop L studied
here is special in the sense that it is formed by stable and unstable manifolds of different
dimension, and their orbits are not intersection of stable and unstable manifolds. As far as we
know, the use of these kind of heteroclinic loops in order to find periodic orbits is not very
common in the literature and nevertheless it is a very interesting problem from a dynamical
point of view because it exhibits the complicated dynamics near these heteroclinic loops in a
very simple form. In [4] the authors use similar techniques than those used here for proving the
existence of periodic orbits for a particular case of the charged rhomboidal four-body problem,
but they do not mention explicitly the existence of the heteroclinic loop. Here we treat the
problem in a more general form, we describe the heteroclinic loop L, we give the conditions
that must verify a vector field X in D

3 in order to have periodic orbits near the heteroclinic
loop L, and finally we give two particular examples of vector fields satisfying this dynamics.

In section 2 we prove the existence of infinitely many periodic orbits for any vector
field defined on the closed ball D

3 having the described generalized heteroclinic loop and
the mentioned symmetry. In section 3 we apply the analysis done in section 2 to a class of
quadratic polynomial vector fields in R

3, showing that the easiest nonlinear systems already
present complicated dynamics. Finally in section 4 we use the results of section 2 to prove
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the existence of infinitely many symmetric periodic orbits for the charged rhomboidal four-
body problem that pass near total collision, extending results of [4]. The charged rhomboidal
four-body problem consist of describing the dynamics of four point particles endowed with
a positive mass and an electrostatic charge of any sign, moving under the influence of the
respective Newtonian and Coulombian forces in such a way that the four particles form a
rhombus at every time.

2. The main theorem

Without loss of generality we can assume that the closed ball is D
3 = {(x, y, z) ∈ R

3 :
x2 + y2 + z2 � 1}, its boundary is S

2 = {(x, y, z) ∈ R
3 : x2 + y2 + z2 = 1}, the

interior diameter is � = {(x, y, z) ∈ R
3 : x = y = 0,−1 < z < 1} and the line

of symmetry is L = {(x, y, z) ∈ R
3 : x = z = 0}. Assume that the vector field

X = (f (x, y, z), g(x, y, z), h(x, y, z)) is defined on the closed ball D
3 and it satisfies the

following conditions:

(C1) The sphere S
2 is invariant under the flow of X.

(C2) On S
2 the vector field X has two foci, e+ = {(0, 0, 1)} and e− = {(0, 0,−1)}.

(C3) Every orbit on S
2 different from the two foci starts spiraling at e− and ends spiraling

at e+. In fact, S
2\{e+, e−} is the two-dimensional unstable manifold of e− (

Wu
e−

)
which

coincides with the two-dimensional stable manifold of e+
(
Ws

e+

)
.

(C4) The diameter � is formed by a unique orbit starting at e+ and ending at e−; i.e. � is the
one-dimensional unstable manifold of e+

(
Wu

e+

)
which coincides with the one-dimensional

stable manifold of e− (
Ws

e−
)
.

(C5) The flow on D
3 is invariant under the time-reversibility symmetry (x, y, z, t) −→

(−x, y,−z,−t); that is, it is symmetric with respect to the line of symmetry L (i.e.
the y-axis) and a change of the sign of the time.

Under these assumptions the vector field X possesses a generalized heteroclinic loop L
formed by the equilibrium points e+ and e− and the invariant manifolds Wu

e− = Ws
e+ and

Ws
e− = Wu

e+ .
Let P = {(0, 0, 0)} be the intersection point of the line of symmetry L with the diameter

� and let Q = {(0, 1, 0)} and R = {(0,−1, 0)} be the intersection points of L with S
2.

Proposition 1. Assume that the vector field X is defined on the closed ball D
3 and it satisfies

conditions (C1)–(C5), then X has infinitely many periodic orbits near the heteroclinic loop L
that cross exactly two times the plane z = 0 during a period. In particular, we have infinitely
many periodic orbits with one crossing near the point P and the other one near Q, and infinitely
many periodic orbits with one crossing near P and the other one near R, see figure 2.

Proof. Using the invariance of the vector field X with respect to the symmetry (x, y, z, t) −→
(−x, y,−z,−t) we have that if φ(t) = (x(t), y(t), z(t)) is a solution of X, then ψ(t) =
(−x(−t), y(−t),−z(−t)) is also a solution. This symmetry can be used in the standard way
in order to obtain symmetric periodic solutions. Using the symmetry and the uniqueness
theorem on the solutions of the differential system associated with X it is easy to see that if
x(0) = z(0) = 0, then the orbits φ and ψ must be the same. Moreover, if there exists a time
τ > 0 such that x(τ) = z(τ ) = 0 and x(τ)2 + z(τ )2 �= 0 for all 0 < t < τ , then the orbit must
be periodic of period 2τ . In other words, if an orbit intersects the line of symmetry L at two
different points, then it is a periodic orbit. The use of time-reversibility symmetries in order
to find symmetric periodic orbits is a classical technique (see [17]) and it is much used at the
present time (see for instance [14]).
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Figure 2. The map π .

We start giving some definitions and some notations. Assume that εi > 0 are sufficiently
small values for all i = 1, 2, 3. We consider the segment γ = {(0, y, 0) ∈ L : y ∈ (0, ε1)},
and the section � = {(x, y, z) ∈ D

3 : z = 0}. We also consider a small topological
cylinder in a neighbourhood of the equilibrium point e− = {(0, 0,−1)} with base on S

2

and boundaries �1 and �2 with �1 = {(x, y, z) ∈ D
3 : z = −1 + ε2, x

2 + y2 � ε3} and
�2 = {(x, y, z) ∈ D

3 : z � −1 + ε2, x
2 + y2 = ε3}, see figure 2.

We define a map π : γ −→ � in the following way. We denote by ϕ(t, q) the flow
generated by system X, satisfying ϕ(0, q) = q. We consider the diffeomorphism π0 : γ → �1

defined by π0(q) = p, where p is the point at which the orbit ϕ(t, q) intersects the cross section
�1 for the first time. By the continuity of the flow ϕ with respect to initial conditions, if q

is sufficiently close to the point P, then the orbit ϕ(t, q) is close to the orbit � for all t in
a finite interval of time. Since the orbit � expends a finite time for going from the point P
to the point S = �1 ∩ �, we can guarantee that for all q ∈ γ sufficiently close to P the
orbit ϕ(t, q) intersects �1. Consequently if ε1 is sufficiently small, then the map π0 is well
defined. Moreover, the image by π0 of γ is an arc on �1 with S as one of its endpoints (see
figure 2).

We consider a second diffeomorphism π1 : �1 −→ �2 defined by π1(q) = p, where p

is the point at which the orbit ϕ(t, q) intersects �2 for the first time. If ε3 is sufficiently small,
then the orbit ϕ(t, q) intersects �2 for all q ∈ �1\{S}, because e− is a hyperbolic equilibrium
point with Wu

e− = S
2\{e+, e−} and Ws

e− = �. Moreover, since e− is an unstable focus on S
2

and the point π0(P ) = S ∈ Ws
e− , the image π1(π0(γ )) is a spiral on �2 that approaches to S

2,
when we approach to P, spiraling infinitely many times (see again figure 2).

We define a third map π2 : �2 −→ �, defined by π2(q) = p, where p is the point at
which the orbit ϕ(t, q) intersects � for the first time. Since from condition (C3) every orbit
on S

2 starts at e− and ends at e+, if ε2 and ε3 are sufficiently small then the point p is well
defined.

Finally, we consider the map π : γ −→ � defined by π = π2 ◦ π1 ◦ π0. Since the orbits
expend a finite time for going from �2 to �, π2 is a diffeomorphism. Therefore the image
π(γ ) is a spiral on � that approaches to S

2, when we approach to P, spiraling infinitely many
times.

We note that π(γ ) intersects the line of symmetry L infinitely many times near the point
Q, and infinitely many times near the point R. Since the points of γ belong to the line of
symmetry, those intersection points correspond to orbits of X that cross the line of symmetry at
two different points; that is, they correspond to symmetric periodic orbits. By the construction,
these periodic orbits cross exactly two times the plane z = 0. �
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The periodic orbits given by proposition 1 are obtained from the intersection points
of the image by π of the segment γ = {(0, y, 0) ∈ L : y ∈ (0, ε1)} with the line of
symmetry L. If we repeat the arguments of the proof of proposition 1 with the segment
γ ′ = {(0, y, 0) ∈ L : y ∈ (−ε1, 0)} instead of γ we would obtain infinitely many symmetric
periodic orbits that are different from those obtained above.

Proposition 2. Assume that the vector field X is defined on the closed ball D
3 and it satisfies

conditions (C1)–(C5), then X has infinitely many periodic orbits near the heteroclinic loop L
that cross exactly four times the plane z = 0 during a period.

Proof. We proceed in a similar way as in the proof of proposition 1. We consider
γ , �, �1 and �2 defined as in that proof, and we consider another small topological
cylinder in a neighbourhood of the equilibrium point e+ = {(0, 0, 1)} with base on S

2 and
boundaries �3 and �4 where �3 = {(x, y, z) ∈ D

3 : z � 1 − ε4, x
2 + y2 = ε5}, �4 =

{(x, y, z) ∈ D
3 : z = 1 − ε4, x

2 + y2 � ε5}, and ε4, ε5 > 0 are sufficiently small (see
figure 3).

Let π0 and π1 be defined as in the proof of proposition 1. We define a third map
π2 : �2 −→ �3, defined by π2(q) = p, where p is the point at which the orbit ϕ(t, q)

intersects �3 for the first time. Since Wu
e− = Ws

e+ = S
2\{e+, e−}, if ε2 and ε3 are sufficiently

small, then the point p is well defined. Moreover, the orbits expend a finite time for going
from �2 to �3, so π2 is a diffeomorphism. Therefore the image π2(π1(π0(γ ))) is a spiral
on �3 that approaches to S

2, when we approach to P, spiraling infinitely many times (see
figure 3).

We define another map π3 : �3 −→ �4 defined by π3(q) = p, where p is the point at
which the orbit ϕ(t, q) intersects �4 for the first time. If ε4 is sufficiently small, then this
point p is well defined because e+ is a hyperbolic equilibrium point with Ws

e+ = S
2\{e+, e−}

and Wu
e+ = �. Moreover, the image π3(π2(π1(π0(γ )))) is a spiral on �4 that approaches to

the point S ′ = �4 ∩ �, when we approach to P, spiraling infinitely many times (see again
figure 3).
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We define π4 : �4 −→ � in a similar way than π−1
0 . Finally we consider the map


 : γ −→ � defined by 
 = π4 ◦ π3 ◦ π2 ◦ π1 ◦ π0. The image 
(γ ) is a spiral on � that
approaches to P spiraling infinitely many times.

We note that 
(γ ) intersects γ and γ ′ both infinitely many times. Since the points of
γ belong to the line of symmetry, those intersection points correspond to symmetric periodic
orbits of X. The points of γ ∩ 
(γ ) correspond to the symmetric periodic orbits found in
proposition 1 (that have exactly two intersection points with z = 0), and probably to new ones
(that have exactly four intersection points with z = 0). The points of γ ′ ∩ 
(γ ) correspond
to symmetric periodic orbits that cannot be found in proposition 1 and that have exactly four
intersection points with z = 0. �

We can apply similar arguments to analyse the intersection points of γ ′ ∩ 
(γ ′) and
γ ∩ 
(γ ′). We note that the symmetric periodic orbits obtained from the points of γ ′ ∩ 
(γ )

and γ ∩ 
(γ ′) are the same.
Using similar arguments as those used in propositions 1 and 2, it is not difficult to see that

the periodic orbits coming from the intersection points of π(
(γ )) with the line of symmetry
L provide the symmetric periodic orbits found in proposition 1, and additionally provide
infinitely many symmetric periodic orbits that cross exactly six times the plane z = 0 during a
period. The intersection points of 
2(γ ) with the line of symmetry L provide the symmetric
periodic orbits found in proposition 2, and additionally provide infinitely many symmetric
periodic orbits that cross exactly eight times the plane z = 0 during a period; and so on. In
short we have proved the following result, which is the main result of this paper.

Theorem 3. Assume that the vector field X is defined on the closed ball D
3 and it satisfies

conditions (C1)–(C5). For each n ∈ N the vector field X has infinitely many periodic orbits
near the heteroclinic loop L that cross exactly 2n times the plane z = 0 during a period.

3. Polynomial vector fields

In this section we characterize the class of quadratic polynomial vector fields in R
3 satisfying

conditions (C1)–(C5). So the easier nonlinear vector fields in R
3 already present a complicated

dynamics as provided by theorem 3.
We consider an arbitrary quadratic polynomial vector field X = (P,Q,R) in R

3 with

P =
∑

0�i+j+k�2

aijkx
iyj zk, Q =

∑
0�i+j+k�2

bijkx
iyj zk,

R =
∑

0�i+j+k�2

cijkx
iyj zk.

(1)

Assuming that the straight line x = y = 0 is invariant under the flow of X (condition
(C4)) we have that

a000 = a001 = a002 = b000 = b001 = b002 = 0.

Imposing that the system associated with X is invariant under the symmetry (C5) we get that

a100 = a110 = a011 = b200 = b010 = b020 = b101 = c100

= c110 = c001 = c011 = 0.

Now we impose condition (C1). The sphere S
2 is invariant under the flow of X when the

function 2xẋ + 2yẏ + 2zż evaluated at z = ±
√

1 − x2 − y2 equals to zero. By imposing this
condition we obtain the following relations:
a010 = −b100, a020 = −b110, a101 = c002 − c200, a200 = 0,

b011 = c002 − c020, c000 = −c002, c010 = 0, c101 = 0.
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Condition (C4) says that X has no singular points on � = {(x, y, z) ∈ R
3 : x = y = 0,

−1 < z < 1} and that the flow of X on � goes in the decreasing direction of the z axis. The
flow of X on the straight line x = y = 0 is given by ẋ = 0, ẏ = 0 and ż = c002(z

2 − 1). So if
c002 > 0, then condition (C4) is satisfied.

From condition (C2), the equilibrium points e+ = {(0, 0, 1)} and e− = {(0, 0,−1)} must
be foci. Let α = c020 + c200 − 2c002 and β = (c020 − c200)

2 − 4b100
2. The eigenvalues of the

linear part of X at the equilibrium points e+ and e− are

λ1 = 2c002, λ2,3 = −α ± √
β

2
, (2)

and

λ1 = −2c002, λ2,3 = α ∓ √
β

2
, (3)

respectively. So the coefficients must satisfy that β < 0, and consequently |b100| >

|c020 − c200|/2.
Finally we impose that every orbit on S

2 different from the two foci starts spiraling at
e− and ends spiraling at e+ (condition (C3)). In order to impose this condition we write the
vector field X in spherical coordinates x = r cos θ cos φ, y = r cos θ sin φ and z = r sin θ . If
the derivative dθ/dt evaluated at r = 1 is positive for all θ ∈ (−π/2, π/2) and φ ∈ [0, 2π),
then condition (C3) is satisfied. After some computations we get

dθ

dt

∣∣∣∣
r=1

= 1

2
cos θ [α + (c200 − c020) cos(2φ)]

So we need that α > |c200 − c020|.
In short we have proved the following result.

Proposition 4. The quadratic polynomial vector fields of the form

X = (−ay − by2 + (c − d)xz, ax + bxy + (c − e)yz,−c + dx2 + ey2 + cz2)

with c > 0, e + d − 2c > |d − e| and |a| > |e − d|/2 satisfy conditions (C1)–(C5).

Then applying theorem 3 we obtain the following result.

Theorem 5. Let X be a quadratic vector field defined as in proposition 4, and let L be the
heteroclinic loop formed by the equilibrium points e+ = {(0, 0, 1)} and e− = {(0, 0,−1)}
and the invariant manifolds S

2 = {(x, y, z) ∈ R
3 : x2 + y2 + z2 = 1}\{e+, e−} and

� = {(x, y, z) ∈ R
3 : x = 0, y = 0,−1 < z < 1}. For each n ∈ N the vector field

X has infinitely many periodic orbits near the heteroclinic loop L that cross exactly 2n times
the plane z = 0 during a period.

4. The charged four-body problem

4.1. Introduction

The charged four-body problem corresponds to the study of the dynamics of four point
particles endowed with a positive mass and an electrostatic charge of any sign, moving under
the influence of the respective Newtonian and Coulombian forces. These kind of problems
have been studied among others in [1, 2, 4, 16]. In this paper we study a particular problem,
when the point particles form a rhombus at every time. That is, we consider four point
particles with masses m1,m2,m3 and m4 and charges q1, q2, q3 and q4, located at the vertices
of a rhombus. From here on, the centre of mass is fixed at the origin. In order to preserve the
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Figure 4. The rhombus formed by the four particles.

rhomboidal configuration for all time we must take m1 = m2,m3 = m4, q1 = q2, q3 = q4 and
suitableness symmetrical velocities for the four particles, see figure 4. Choosing a convenient
unit of mass we can suppose that m1 = m2 = 1 and 0 < m3 = m4 = α � 1.

Taking the units of mass and of charge conveniently we can assume that the gravitational
constant and the Coulomb’s constant are equal to 1. We define the new parameters
λij = mimj − qiqj for i, j = 1, 2, 3, 4 and i �= j , then if λij > 0 the resultant force
between the particles i and j is attractive, and if λij < 0 then it is repulsive. It is clear
that depending on the sign of the above parameters it is possible to avoid any kind of binary
collision or even the total collision.

We will prove that, fixed a level of energy Eh with h < 0, the charged rhomboidal four-
body problem satisfies conditions (C1)–(C5) and consequently theorem 3 can be applied to
find infinitely many symmetric periodic orbits of this problem.

In [4] the authors use very similar techniques than those used here in order to prove
the existence of infinitely many symmetric periodic orbits passing near total collision for the
charged rhomboidal four body in the particular case λ34 = 0. Here we find those periodic
orbits for values of λ34 < 0.

4.2. Equations of motion

Let x � 0 be the half distance between the particles 1 and 2 and let y � 0 be the half distance
between the particles 3 and 4, see figure 4. We observe that x = 0 corresponds to double
collision between the particles 1 and 2; y = 0 represents double collision between the particles
3 and 4. The total collision corresponds to x = 0 and y = 0 simultaneously.

In these coordinates the equations of motion can be written as

ẍ = −
[

λ12

4x2
+

2λ13x

(x2 + y2)
3
2

]
, ÿ = − 1

α

[
λ34

4y2
+

2λ13y

(x2 + y2)
3
2

]
, (4)

where the two dots denote the second derivative with respect to t.
The configuration space of the above system is the first quadrant in the (x, y) plane

without the axes which correspond to the collision singularities of (4).
Note that if λ12 = λ34 = 0 and α = 1, equations (4) describe a Kepler problem;

Newtonian or Coulombian depending on the sign of λ13. When λ12 = λ34 = 0 and α < 1,

equations (4) describe the anisotropic Kepler problem, widely studied in [3, 5, 9].
System (4) can be written in Hamiltonian form by taking q = (x, y)T ,M = diag{2, 2α}

and p = Mq̇. In these coordinates system (4) becomes

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
, (5)

where

H = 1
2 pT M−1p − U(q). (6)
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and the potential U is

U = λ12

2x
+

4λ13√
x2 + y2

+
λ34

2y
. (7)

In short, the charged rhomboidal four–body problem can be formulated as the motion of a
fictitious one particle of position q under the dynamics of the Hamiltonian system (5).

4.3. McGehee coordinates

We introduce McGehee coordinates [15] in order to analyse the behaviour of the orbits in a
neighbourhood of the total collision, in this way we define

r =
√

2(x2 + αy2), θ = arctan

√
αy

x
, v = r1/2ṙ , u = r3/2θ̇ .

Since both x and y are positive we have that θ ∈ (0, π/2); v and u are the radial and tangential
velocity of q scaled by the factor r1/2. We also scale the time variable by dt/dτ = r3/2.

We note that θ = 0 corresponds to binary collision between the particles 3 and 4, and
θ = π/2 corresponds to binary collision between the particles 1 and 2. On the other hand,
r = 0 corresponds to the total collision.

In McGehee coordinates system (4) becomes

ṙ = rv, v̇ = u2 +
v2

2
− U(θ),

θ̇ = u, u̇ = −uv

2
+ U ′(θ),

(8)

where now the dot denotes the derivative with respect to τ ,

U(θ) =
√

α

2

[
λ12√

α cos θ
+

8λ13√
α cos2 θ + sin2 θ

+
λ34

sin θ

]
, (9)

and U ′(θ) means derivation with respect to the variable θ. In the new variables the energy
relation H = h goes over to

u2 + v2 = 2U(θ) + 2hr. (10)

We observe that in equation (9) the potential U depends only on the angular variable θ, here
we have used the fact that U is a homogeneous function in the variables x and y with degree of
homogeneity −1. In Devaney [7] we can see that system (8) appears usually when we study
the total collision manifold.

Since the original system (4) can be written in Hamiltonian form (5), in terms of a function
which is quadratic in the momenta, we obtain that the system is reversible, property which
persists when we introduce McGehee coordinates, in other words the system (8) possesses the
symmetry (r, v, θ, u, τ ) −→ (r,−v, θ,−u,−τ).

The total collision manifold � is characterized by

� = {(r, v, θ, u) : r = 0, v2 + u2 = 2U(θ), θ ∈ (0, π/2)}. (11)

Since ṙ = 0 when r = 0 in the first equation of (8), we have that � is invariant under the flow;
from the energy relation (10) we also have that � is independent of the value of the constant
energy h; i.e., each energy surface has the same total collision manifold � in its boundary.

We note that by (11) the total collision manifold � is not defined when U(θ) < 0 for all
θ ∈ (0, π/2). Clearly, the shape of the collision manifold is strongly related with the shape of
the potential function U(θ). This function is analysed in the following section.
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4.4. The total collision manifold

In [1] there is a classification of all possible shapes of U(θ) with respect to the parameters
when λ12 �= 0 and λ34 �= 0. In this paper we are interested just in the case on which the total
collision manifold is compact. In this way we first fix the sign of the parameters in such a way
that λ12 < 0, λ34 < 0 and λ13 > 0. That is, we are supposing that we have repulsion between
the particles 1 and 2, as well as between the particles 3 and 4, and we have attraction between
the particles 1 and 3, 1 and 4, 2 and 3, and 2 and 4.

Let,

β = λ12

λ34
, δ = λ13

λ34
, κ = 8δ(α − 1).

By the choice of the signs of the parameters we have that β > 0, δ < 0 and κ � 0. The
derivative of the potential function U(θ) given in (9) is

U ′(θ) =
√

α

2
λ34

[
β sin θ√
α cos2 θ

+
κ sin θ cos θ

(α cos2 θ + sin2 θ)
3
2

− cos θ

sin2 θ

]
.

Let

g(θ) = β√
α

+
κ

(α + tan2 θ)
3
2

− 1

tan3 θ
, (12)

then

U ′(θ) =
√

α

2
λ34

sin θ

cos2 θ
g(θ). (13)

Therefore, the critical points of U(θ) for θ ∈ (0, π/2) are the roots of the equation g(θ) = 0.

By straightforward computations we get

(i) limθ→0+ g(θ) = −∞, and limθ→π/2− g(θ) = βα−1/2.

(ii) If g′(θg) = 0 then θg = arctan[α1/2(κ2/5 − 1)
−1/2

], where κ > 1.

(iii) g(θg) = α−3/2[βα + (κ2/5 − 1)5/2].
(iv) The function g has a unique zero θ0 in (0, π/2).

Using these properties of the function g, and since the potential function (9) satisfies that

lim
θ→0+

U(θ) = −∞ and lim
θ→π/2−

U(θ) = −∞,

we obtain the next result.

Proposition 6. When λ12 < 0, λ34 < 0 and λ13 > 0, the potential function U(θ) has exactly
one critical point θ0 on the interval (0, π/2), which is a maximum.

Let θ0 be the critical point of U given in proposition 6, we are interested in the possible
sign of U(θ0). Since g(θ0) = 0, using (9) and (12), we get after some algebraic manipulations
that

U(θ0) =
√

α

2

1

cos3 θ0

[
8λ13

(α + tan2 θ0)
3
2

+
λ34

tan3 θ0

]
. (14)

From here, since θ0 ∈ (0, π/2), the sign of U(θ0) is the same that the sign of the
expression between the brackets. After some computations we finally obtain the conditions
on the parameters to get U(θ0) > 0. We put them into the following result.

Proposition 7. Let θ0 be the critical point of the potential U(θ), if 8δ + 1 < 0 and
θ0 > arctan[α1/2((−8δ)2/3 − 1)−1/2], then U(θ0) > 0.
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We observe that, if the parameters satisfy the hypotheses of propositions 6 and 7,
then the potential function U(θ) is convex, it has a maximum θ0 ∈ (0, π/2) with
U(θ0) > 0, limθ→0+ U(θ) = −∞, and limθ→π/2− U(θ) = −∞ and consequently there
are no binary collisions. Moreover, we can find 0 < θ1 < θ0 < θ2 < π/2 such that
U(θ1) = U(θ2) = 0 and U(θ) > 0 for all θ ∈ (θ1, θ2). In summary we have the next result.

Theorem 8. If λ12 < 0, λ34 < 0 and λ13 > 0, 8δ + 1 < 0 and θ0 > arctan[α1/2((−8δ)2/3 −
1)−1/2], then the charged rhomboidal four-body problem has a total collision manifold
� = {(r, v, θ, u) : r = 0, v2 + u2 = 2U(θ), θ ∈ [θ1, θ2]} that is homeomorphic to a
two–dimensional sphere. Moreover there are no binary collisions between the particles, but
there are total collisions.

4.5. Equilibrium points

In this section we compute the equilibrium points of system (8), which are strongly related
with the critical points of the potential U(θ). Since the equilibrium points (r0, v0, θ0, u0) are
zeros of the vector field given by (8) and satisfy the energy relation (10), we obtain

r0 = 0, u0 = 0, U ′(θ0) = 0, v0 = ±
√

2U(θ0). (15)

In the hypotheses of theorem 8 we have that U(θ0) > 0, so in this case the global flow
given by (8) has two equilibrium points, both in �, given by (15) that, roughly speaking, they
correspond to the northern and southern poles of �, respectively. We denote them by e+ and
e− according with v0 > 0 or v0 < 0.

Since the last three equations of system (8) do not depend on r and the coordinate r

can be obtained from the energy relation (10), in order to describe the flow of (8) on a fixed
energy level H = h, it is sufficient to describe the flow of the system formed by the last three
equations of (8)

v̇ = u2 +
v2

2
− U(θ), θ̇ = u, u̇ = −uv

2
+ U ′(θ). (16)

We note that if the parameters satisfy the hypotheses of theorem 8, then the level of energy Eh

of (8) with h < 0 is homeomorphic to the closed ball of R
3, D

3 = {(u, θ, v) ∈ R
3 : v2 + u2 �

2U(θ), θ ∈ [θ1, θ2]} with boundary S
2 = {(u, θ, v) ∈ R

3 : v2 + u2 = 2U(θ), θ ∈ [θ1, θ2]}.
Moreover S

2 is invariant under the flow of (16), see (10). From here on we take the coordinates
of the points of R

3 as (u, θ, v).
We linearize the vector field (16) at the equilibrium points e+ = {(0, θ0,

√
2U(θ0))} and

e− = {(0, θ0,−
√

2U(θ0))}. The eigenvalues at them are given by

µ1 = v0, µ2,3 =
−v0 ±

√
v2

0 + 16U ′′(θ0)

4
,

with eigenvectors

v1 = (0, 0, 1), v2,3 =

v0 ±

√
v2

0 + 16U ′′(θ0)

4
, 1, 0


 , (17)

respectively. Note that the vectors v2 and v3 are tangent to S
2.

We observe that if v0 �= 0 and U ′′(θ0) �= 0, then the two equilibrium points are hyperbolic.
In this case we can compute the stable and the unstable invariant manifolds associated with
these equilibrium points. We denote by W

s,(u)
P the global stable (unstable) invariant manifold
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associated with the equilibrium point P. In the assumptions of theorem 8, note that since θ0 is
a maximum of U(θ0), then U ′′(θ0) � 0.

A vector field F is gradient like with respect to a function g if all non-equilibrium solutions
of ẋ = F(x) are increasing with respect to g.

Theorem 9. Let e+ and e− be the equilibrium points (15) for the flow given by (16), where
U(θ0) > 0 and U ′′(θ0) < 0. We assume that the energy value is h < 0.

(a) Ws
e+ = S

2\{e+, e−} where dimWs
e+ = 2, and Wu

e+ = {(u, θ, v) : u = 0, θ =
θ0,−

√
2U(θ0) < v <

√
2U(θ0)} = � where dimWu

e+ = 1;
(b) Ws

e− = Wu
e+ and Wu

e− = Ws
e+ .

Proof. From (16) the flow on S
2 is given by

v̇ = u2

2
, θ̇ = u, u̇ = −uv

2
+ U ′(θ). (18)

Since v̇ � 0 and it is not identically zero on any orbit of (18) different from e+ and e−,
the vector field given by (18) is gradient like with respect to the coordinate v. Therefore, all
the orbits on S

2\{e+, e−} have α-limit e− and ω-limit e+.
Observe that the segment � is invariant under the flow of (16), it joins the equilibrium

points e+ and e−, and the flow on it goes in the decreasing direction of the v axis. We note that
the orbit � is an ejection–collision homothetic orbit of (8), because h < 0; i.e. it is an orbit
that at any time form a central configuration.

By the Hartman’s theorem (see, for instance, [11]), and (17), the statements (a) and (b)
follows. �

4.6. Symmetric periodic orbits

Now we apply theorem 3 to system (16). First we see that system (16) satisfies conditions
(C1)–(C5) of section 2.

Assume that the parameters satisfy the hypotheses of theorem 8. Then system (16)
satisfies condition (C1) because S

2 = {(u, θ, v) ∈ R
3 : v2 + u2 = 2U(θ), θ ∈ [θ1, θ2]} is

invariant under the flow of (16). If v2
0 + 16U ′′(θ0) < 0, then system (16) has two foci on

S
2, e+ = {(0, θ0,

√
2U(θ0))} and e− = {(0, θ0,−

√
2U(θ0))}, so condition (C2) is satisfied.

From theorem 9, Ws
e+ = Wu

e− = S
2\{e+, e−} and Wu

e+ = Ws
e− = {(u, θ, v) : u = 0, θ =

θ0,−
√

2U(θ0) < v <
√

2U(θ0)} = �, thus conditions (C3) and (C4) are satisfied. Finally,
since system (8) possesses the symmetry (r, v, θ, u, τ ) −→ (r,−v, θ,−u,−τ), system (16) is
invariant under the symmetry (u, θ, v, τ ) −→ (−u, θ,−v,−τ), so condition (C5) is satisfied.

Let L be the heteroclinic loop formed by the equilibrium points e+ and e− and their
invariant manifolds Ws

e+ = Wu
e− and Wu

e+ = Ws
e− . Applying theorem 3 to system (16) we have

that if the parameters satisfy the hypotheses of theorem 8 and condition v2
0 + 16U ′′(θ0) < 0,

then for each n ∈ N system (16) has infinitely many periodic orbits near the heteroclinic loop
L that cross exactly 2n times the plane v = 0 during a period. Clearly the periodic solutions
of (16) give periodic solutions of (8) on the fixed energy level Eh. Therefore we have proved
the following result.

Theorem 10. Assume the hypotheses of theorem 8 and the condition v2
0 + 16U ′′(θ0) < 0. For

each h < 0 and for each n ∈ N, the charged rhomboidal four-body problem (8) has infinitely
many periodic orbits having fixed energy h that pass close to total collision. Moreover these
periodic orbits cross exactly 2n times the plane v = 0 during a period.
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5. Discussion section

Using only geometrical and topological arguments we have provided sufficient conditions in
order that a vector field in R

3 has infinitely many periodic solutions near a heteroclinic loop
L formed by a two-dimensional sphere and an inner diameter of it. The use of geometrical
arguments allows us to obtain the properties of the Poincaré map that are necessary in order to
prove the existence of those periodic orbits without knowing the explicit analytic expression
of the Poincaré map and without knowing the exact analytic expression of the vector field.
Moreover the use of the mentioned geometrical arguments avoids the hard computations
necessary for computing the image of the Poincaré map when the explicit analytic expression
of the vector field is known.

We have also showed that the loop L appears in classical physics systems as the charged
four-body problem, and in systems which are being studied intensively by the mathematicians
during these last years as the polynomials differential systems. Recently the study of the
periodic orbits of polynomial vector fields in dimension larger than 2 is object of a great
interest, see for instance [19–21] and the references quoted there.

Note that we have only proved the existence of infinitely many periodic orbits near the loop
L, but we have not computed those periodic orbits explicitly. When the analytic expression of
the vector field is known those periodic orbits could be computed analytically sometimes and
numerically in general from the explicit analytic expression of the Poincaré map, but this was
not the objective of this work.

The periodic orbits found here are not transversal as intersection of the stable and unstable
manifolds so they are not related with the standard notion of chaos. Moreover these periodic
orbits are not obtained from bifurcation because we do not need to move any parameter in
order to obtain them.
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